Зарегистрироваться
Восстановить пароль
FAQ по входу

PyTorch

Доверенные пользователи и модераторы раздела

  • Без фильтрации типов файлов
A
Independently published, 2024. — 540 р. — ISBN 979-8329915327, ASIN B0D8JKJR9Y. Embark on an enlightening journey through the world of machine learning and artificial intelligence with our comprehensive guide to PyTorch. As one of the premier frameworks in the field, PyTorch has rapidly gained traction among researchers, developers, and enthusiasts alike, owing to its intuitive...
  • №1
  • 3,87 МБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 540 р. — ISBN 979-8329915327, ASIN B0D8JKJR9Y. Embark on an enlightening journey through the world of machine learning and artificial intelligence with our comprehensive guide to PyTorch. As one of the premier frameworks in the field, PyTorch has rapidly gained traction among researchers, developers, and enthusiasts alike, owing to its intuitive...
  • №2
  • 3,76 МБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 540 р. — ISBN 979-8329915327, ASIN B0D8JKJR9Y. Embark on an enlightening journey through the world of machine learning and artificial intelligence with our comprehensive guide to PyTorch. As one of the premier frameworks in the field, PyTorch has rapidly gained traction among researchers, developers, and enthusiasts alike, owing to its intuitive...
  • №3
  • 3,82 МБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 540 р. — ISBN 979-8329915327, ASIN B0D8JKJR9Y. Embark on an enlightening journey through the world of machine learning and artificial intelligence with our comprehensive guide to PyTorch. As one of the premier frameworks in the field, PyTorch has rapidly gained traction among researchers, developers, and enthusiasts alike, owing to its intuitive...
  • №4
  • 5,99 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2024. — 230 p. Key Features: Reduce the model-building time by applying optimization techniques and approaches Harness the computing power of multiple devices and machines to boost the training process Focus on model quality by quickly evaluating different model configurations Book Description: Penned by an expert in High-Performance Computing (HPC) with over...
  • №5
  • 10,26 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 355 p. — ISBN: 978-1-83864-483-3. Discover powerful ways to explore deep learning algorithms and solve real-world computer vision problems using Python Developers can gain a high-level understanding of digital images and videos using computer vision techniques. With this book, you’ll learn how to solve the trickiest of problems in computer vision (CV)...
  • №6
  • 22,77 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 452 p. — ISBN: 978-1-83864-483-3. Discover powerful ways to explore deep learning algorithms and solve real-world computer vision problems using Python Developers can gain a high-level understanding of digital images and videos using computer vision techniques. With this book, you’ll learn how to solve the trickiest of problems in computer vision (CV)...
  • №7
  • 19,09 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 452 p. — ISBN: 978-1-83864-483-3. Discover powerful ways to explore deep learning algorithms and solve real-world computer vision problems using Python Developers can gain a high-level understanding of digital images and videos using computer vision techniques. With this book, you’ll learn how to solve the trickiest of problems in computer vision (CV)...
  • №8
  • 35,01 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 452 p. — ISBN: 978-1-83864-483-3. Discover powerful ways to explore deep learning algorithms and solve real-world computer vision problems using Python Developers can gain a high-level understanding of digital images and videos using computer vision techniques. With this book, you’ll learn how to solve the trickiest of problems in computer vision (CV)...
  • №9
  • 19,09 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 355 p. — ISBN: 978-1-83864-483-3. Code files only! Discover powerful ways to explore deep learning algorithms and solve real-world computer vision problems using Python Developers can gain a high-level understanding of digital images and videos using computer vision techniques. With this book, you’ll learn how to solve the trickiest of problems in...
  • №10
  • 9,73 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2024. — 746 p. Key Features: Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code files are available on...
  • №11
  • 66,30 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2024. — 606 p. (converted to PDF) Key Features: Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code...
  • №12
  • 30,09 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 647 p. — ISBN 1839213477, 9781839213472. Packed with hands-on implementations of deep learning techniques to build image processing applications using PyTorch. Each chapter is accompanied by a GitHub folder with code notebooks and questions to cement your understanding. Key Features - Implement solutions to 50 real-world computer vision applications...
  • №13
  • 92,99 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 647 p. — ISBN 1839213477, 9781839213472. Packed with hands-on implementations of deep learning techniques to build image processing applications using PyTorch. Each chapter is accompanied by a GitHub folder with code notebooks and questions to cement your understanding. Key Features - Implement solutions to 50 real-world computer vision applications...
  • №14
  • 78,94 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 647 p. — ISBN 1839213477, 9781839213472. Packed with hands-on implementations of deep learning techniques to build image processing applications using PyTorch. Each chapter is accompanied by a GitHub folder with code notebooks and questions to cement your understanding. Key Features - Implement solutions to 50 real-world computer vision applications...
  • №15
  • 82,45 МБ
  • добавлен
  • описание отредактировано
B
2nd. ed. - Birmingham: Packt Publishing, 2025. - 448 p. - ISBN 1835884458. Master GenAI techniques to create images and text using variational autoencoders (VAEs), generative adversarial networks (GANs), LSTMs, and large language models (LLMs). Key Features Implement real-world applications of LLMs and generative AI. Fine-tune models with PEFT and LoRA to speed up training....
  • №16
  • 78,76 МБ
  • добавлен
  • описание отредактировано
D
Packt Publishing Ltd., 2020. — 276 p. — ISBN: 978-1-78980-274-0. Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a...
  • №17
  • 4,69 МБ
  • добавлен
  • описание отредактировано
Packt Publishing Ltd., 2020. — 276 p. — ISBN: 978-1-78980-274-0. Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a...
  • №18
  • 13,45 МБ
  • добавлен
  • описание отредактировано
Packt Publishing Ltd., 2020. — 276 p. — ISBN: 978-1-78980-274-0. Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a...
  • №19
  • 7,29 МБ
  • добавлен
  • описание отредактировано
Packt Publishing Ltd., 2020. — 276 p. — ISBN: 978-1-78980-274-0. Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of that data is a...
  • №20
  • 7,39 МБ
  • добавлен
  • описание отредактировано
Packt Publishing Ltd., 2020. — 276 p. — ISBN: 978-1-78980-274-0. Code files only! Become a proficient NLP data scientist by developing deep learning models for NLP and extract valuable insights from structured and unstructured data In the internet age, where an increasing volume of text data is generated daily from social media and other platforms, being able to make sense of...
  • №21
  • 10,97 МБ
  • добавлен
  • описание отредактировано
G
Independently published, 2021. — 1187 p. Version 1.0, 2021-05-18. If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-). The book covers from the basics of gradient descent all the way up to fine-tuning large NLP models (BERT and...
  • №22
  • 22,30 МБ
  • добавлен
  • описание отредактировано
Independently published, 2021. — 1187 p. Version 1.0, 2021-05-18 If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) The book covers from the basics of gradient descent all the way up to fine-tuning large NLP models (BERT and GPT-2)...
  • №23
  • 30,50 МБ
  • добавлен
  • описание отредактировано
Independently published, 2021. — 1187 p. Version 1.0, 2021-05-18 If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) The book covers from the basics of gradient descent all the way up to fine-tuning large NLP models (BERT and GPT-2)...
  • №24
  • 14,57 МБ
  • добавлен
  • описание отредактировано
Leanpub, 2022. — 1042 p. 2022-02-12 (v1.1.1) If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) PyTorch is the fastest-growing framework for developing deep learning models and it has a huge ecosystem. That is, there are many tools...
  • №25
  • 33,58 МБ
  • добавлен
  • описание отредактировано
Leanpub, 2022. — 1042 p. 2022-02-12 (v1.1.1) If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) PyTorch is the fastest-growing framework for developing deep learning models and it has a huge ecosystem. That is, there are many tools...
  • №26
  • 21,33 МБ
  • добавлен
  • описание отредактировано
Leanpub, 2022. — 1042 p. 2022-02-12 (v1.1.1) If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) PyTorch is the fastest-growing framework for developing deep learning models and it has a huge ecosystem. That is, there are many tools...
  • №27
  • 22,05 МБ
  • добавлен
  • описание отредактировано
Leanpub, 2022. — 1042 p. 2022-02-12 (v1.1.1) If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) PyTorch is the fastest-growing framework for developing deep learning models and it has a huge ecosystem. That is, there are many tools...
  • №28
  • 26,20 МБ
  • добавлен
  • описание отредактировано
Independently published, 2021. — 1187 p. Version 1.0, 2021-05-18 If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) The book covers from the basics of gradient descent all the way up to fine-tuning large NLP models (BERT and GPT-2)...
  • №29
  • 17,33 МБ
  • добавлен
  • описание отредактировано
Leanpub, — 2024. — 1047 p. — Version 1.2. — ISBN-13 979-8533935746. If you're looking for a book where you can learn about Deep Learning and PyTorch without having to spend hours deciphering cryptic text and code, and that's easy and enjoyable to read, this is it :-) The book covers from the basics of gradient descent all the way up to fine-tuning large NLP models (BERT and...
  • №30
  • 33,45 МБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 288 p. — ASIN: B07N7KP6NJ. PyTorch: A Comprehensive Guide to Deep Learning for Beginners – A Step-by-Step Guide is designed to demystify the world of deep learning, making it accessible to individuals with little to no programming experience. It focuses on practical implementation using PyTorch, a popular and user-friendly framework. Why This...
  • №31
  • 580,91 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 288 p. — ASIN: B07N7KP6NJ. PyTorch: A Comprehensive Guide to Deep Learning for Beginners – A Step-by-Step Guide is designed to demystify the world of deep learning, making it accessible to individuals with little to no programming experience. It focuses on practical implementation using PyTorch, a popular and user-friendly framework. Why This...
  • №32
  • 551,76 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 288 p. — ASIN: B07N7KP6NJ. PyTorch: A Comprehensive Guide to Deep Learning for Beginners – A Step-by-Step Guide is designed to demystify the world of deep learning, making it accessible to individuals with little to no programming experience. It focuses on practical implementation using PyTorch, a popular and user-friendly framework. Why This...
  • №33
  • 408,66 КБ
  • добавлен
  • описание отредактировано
H
Packt Publishing Ltd., 2020. — 301 p. —ISBN: 978-1-78953-051-3. Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs...
  • №34
  • 31,51 МБ
  • добавлен
  • описание отредактировано
Packt Publishing Ltd., 2020. — 448 p. —ISBN: 978-1-78953-051-3. Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs...
  • №35
  • 64,22 МБ
  • добавлен
  • описание отредактировано
Packt Publishing Ltd., 2020. — 448 p. —ISBN: 978-1-78953-051-3. Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs...
  • №36
  • 39,18 МБ
  • добавлен
  • описание отредактировано
Packt Publishing Ltd., 2020. — 448 p. —ISBN: 978-1-78953-051-3. Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key improvements in GANs...
  • №37
  • 39,10 МБ
  • добавлен
  • описание отредактировано
Packt Publishing Ltd., 2020. — 301 p. —ISBN: 978-1-78953-051-3. Code files only! Apply deep learning techniques and neural network methodologies to build, train, and optimize generative network models With continuously evolving research and development, Generative Adversarial Networks (GANs) are the next big thing in the field of deep learning. This book highlights the key...
  • №38
  • 34,43 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, Inc., 2020. — 624 p. — ISBN: 9781492045526. Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first...
  • №39
  • 29,81 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, Inc., 2020. — 624 p. — ISBN: 9781492045526 Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library...
  • №40
  • 14,10 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, Inc., 2020. — 624 p. — ISBN: 9781492045526. Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first...
  • №41
  • 30,07 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, Inc., 2020. — 624 p. — ISBN: 978-1492045526. Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first...
  • №42
  • 32,82 МБ
  • добавлен
  • описание отредактировано
J
Amazon Digital Services LLC, 2019. — 160 p. — ASIN: B07N7KP6NJ. This book is an exploration of deep learning in Python using PyTorch. The author guides you on how to create neural network models using PyTorch in Python. You will know the initial steps of getting started with PyTorch in Python. This involves installing PyTorch and writing your first code. PyTorch works using the...
  • №43
  • 339,54 КБ
  • добавлен
  • описание отредактировано
Amazon Digital Services LLC, 2019. — 160 p. — ASIN: B07N7KP6NJ. This book is an exploration of deep learning in Python using PyTorch. The author guides you on how to create neural network models using PyTorch in Python. You will know the initial steps of getting started with PyTorch in Python. This involves installing PyTorch and writing your first code. PyTorch works using the...
  • №44
  • 241,05 КБ
  • добавлен
  • описание отредактировано
Amazon Digital Services LLC, 2019. — 120 р. his book is an exploration of deep learning in Python using PyTorch. The author guides you on how to create neural network models using PyTorch in Python. You will know the initial steps of getting started with PyTorch in Python. This involves installing PyTorch and writing your first code. PyTorch works using the concept of graphs....
  • №45
  • 885,44 КБ
  • добавлен
  • описание отредактировано
Amazon Digital Services LLC, 2019. — 120 р. his book is an exploration of deep learning in Python using PyTorch. The author guides you on how to create neural network models using PyTorch in Python. You will know the initial steps of getting started with PyTorch in Python. This involves installing PyTorch and writing your first code. PyTorch works using the concept of graphs....
  • №46
  • 213,68 КБ
  • добавлен
  • описание отредактировано
Amazon Digital Services LLC, 2019. — 120 р. his book is an exploration of deep learning in Python using PyTorch. The author guides you on how to create neural network models using PyTorch in Python. You will know the initial steps of getting started with PyTorch in Python. This involves installing PyTorch and writing your first code. PyTorch works using the concept of graphs....
  • №47
  • 1,66 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2021. — 450 p. — ISBN 9781789614381. Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer...
  • №48
  • 19,18 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2021. — 450 p. — ISBN 9781789614381. Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer...
  • №49
  • 42,74 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2021. — 450 p. — ISBN 9781789614381. Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer...
  • №50
  • 9,24 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2021. — 450 p. — ISBN 9781789614381. Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer...
  • №51
  • 17,96 МБ
  • добавлен
  • описание отредактировано
Packt, 2023. — 444 p. — Second Edition. PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most from your data and build complex neural network models. You'll create convolutional neural networks (CNNs) for image classification and recurrent neural networks (RNNs) and...
  • №52
  • 14,51 МБ
  • добавлен
  • описание отредактировано
Packt, 2024. — 535 p. — Second Edition. Master advanced techniques and algorithms for machine learning with PyTorch using real-world examples Updated for PyTorch 2.x, including integration with Hugging Face, mobile deployment, diffusion models, and graph neural networks. Key Features: Understand how to use PyTorch to build advanced neural network models Get the best from...
  • №53
  • 46,98 МБ
  • добавлен
  • описание отредактировано
K
Apress, 2022. — 240 p. Design and develop end-to-end, production-grade computer vision projects for real-world industry problems. This book discusses computer vision algorithms and their applications using PyTorch. The book begins with the fundamentals of computer vision: convolutional neural nets, RESNET, YOLO, data augmentation, and other regularization techniques used in the...
  • №54
  • 5,85 МБ
  • добавлен
  • описание отредактировано
Apress, 2022. — 240 p. Design and develop end-to-end, production-grade computer vision projects for real-world industry problems. This book discusses computer vision algorithms and their applications using PyTorch. The book begins with the fundamentals of computer vision: convolutional neural nets, RESNET, YOLO, data augmentation, and other regularization techniques used in the...
  • №55
  • 4,44 МБ
  • добавлен
  • описание отредактировано
Apress Media LLC, 2022. — 240 p. — ISBN-13: 978-1-4842-8273-1. Design and develop end-to-end, production-grade computer vision projects for real-world industry problems. This book discusses computer vision algorithms and their applications using PyTorch. The book begins with the fundamentals of computer vision: convolutional neural nets, RESNET, YOLO, data augmentation, and...
  • №56
  • 4,49 МБ
  • добавлен
  • описание отредактировано
Apress Media LLC, 2022. — 240 p. — ISBN-13: 978-1-4842-8273-1. Design and develop end-to-end, production-grade computer vision projects for real-world industry problems. This book discusses computer vision algorithms and their applications using PyTorch. The book begins with the fundamentals of computer vision: convolutional neural nets, RESNET, YOLO, data augmentation, and...
  • №57
  • 3,16 МБ
  • добавлен
  • описание отредактировано
L
Independently published, 2024. — 117 p. — ASIN: B0CSV4H1FD. Large Language Models (LLMs) are revolutionizing AI, understanding and generating human language like never before. But harnessing their full potential requires the right tools. This book takes you on a deep dive into pyTorch, the leading framework for building and optimizing LLMs. This book is your practical guide to...
  • №58
  • 306,61 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 117 p. — ASIN: B0CSV4H1FD. Large Language Models (LLMs) are revolutionizing AI, understanding and generating human language like never before. But harnessing their full potential requires the right tools. This book takes you on a deep dive into pyTorch, the leading framework for building and optimizing LLMs. This book is your practical guide to...
  • №59
  • 357,74 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 117 p. — ASIN: B0CSV4H1FD. Large Language Models (LLMs) are revolutionizing AI, understanding and generating human language like never before. But harnessing their full potential requires the right tools. This book takes you on a deep dive into pyTorch, the leading framework for building and optimizing LLMs. This book is your practical guide to...
  • №60
  • 336,79 КБ
  • добавлен
  • описание отредактировано
Manning Publications, 2024. - 432 p. - ISBN 1633436462. Create your own generative AI models for text, images, music, and more!. Generative AI tools like ChatGPT, Bard, and DALL-E have transformed the way we work. Learn Generative AI with PyTorch takes you on an incredible hands-on journey through creating and training AI models using Python, the free PyTorch framework and the...
  • №61
  • 44,76 МБ
  • добавлен
  • описание отредактировано
Manning Publications, 2024. — 298 p. Изучите генеративный искусственный интеллект с помощью PyTorch (MEAP v2) Create your own generative AI models for text, images, music, and more! Generative AI tools like ChatGPT, Bard, and DALL-E have transformed the way we work. Learn Generative AI with PyTorch takes you on an incredible hands-on journey through creating and training AI...
  • №62
  • 44,12 МБ
  • добавлен
  • описание отредактировано
Packt, 2019. - 340p. - ISBN: 9781838551964 Learn Use Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problems Develop a multi-armed bandit algorithm to optimize display advertising Scale up learning and control processes using Deep Q-Networks Simulate Markov Decision Processes, OpenAI Gym environments, and other common control...
  • №63
  • 7,93 МБ
  • добавлен
  • описание отредактировано
Packt, 2019. — 340 p. — ISBN: 9781838551964. Learn Use Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problems Develop a multi-armed bandit algorithm to optimize display advertising Scale up learning and control processes using Deep Q-Networks Simulate Markov Decision Processes, OpenAI Gym environments, and other common control...
  • №64
  • 8,73 МБ
  • добавлен
  • описание отредактировано
Packt, 2019. — 340 p. — ISBN: 9781838551964. Code files! Learn Use Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problems Develop a multi-armed bandit algorithm to optimize display advertising Scale up learning and control processes using Deep Q-Networks Simulate Markov Decision Processes, OpenAI Gym environments, and other...
  • №65
  • 78,38 КБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2019. — 334 p. — ISBN: 978-1-83855-196-4. Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has...
  • №66
  • 3,62 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2019. — 441 p. — ISBN: 978-1-83855-196-4. Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has...
  • №67
  • 15,48 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2019. — 441 p. — ISBN: 978-1-83855-196-4. Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has...
  • №68
  • 8,70 МБ
  • добавлен
  • описание отредактировано
Independently published, 2025. — 255 p. Harness the Power of PyTorch for Cutting-Edge AI Solutions. PyTorch has become the go-to Deep Learning framework for researchers and industry professionals alike. Whether you're a data scientist, AI engineer, or Python enthusiast, this book will help you master PyTorch and apply it to real-world Machine Learning and Deep Learning...
  • №69
  • 9,09 МБ
  • добавлен
  • описание отредактировано
M
Birmingham: Packt Publishing, 2020. — 190 p. — ISBN: 1838557040. Key Features Build smart AI systems to handle real-world problems using PyTorch 1.x Become well-versed with concepts such as deep reinforcement learning (DRL) and genetic programming. Cover PyTorch functionalities from tensor manipulation through to deploying in production. Book Description Artificial Intelligence...
  • №70
  • 5,03 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 338 p. — ISBN: 978-1-83855-704-1. Use PyTorch to build end-to-end artificial intelligence systems using Python Artificial Intelligence (AI) continues to grow in popularity and disrupt a wide range of domains, but it is a complex and daunting topic. In this book, you’ll get to grips with building deep learning apps, and how you can use PyTorch for...
  • №71
  • 8,70 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 338 p. — ISBN: 978-1-83855-704-1. Use PyTorch to build end-to-end artificial intelligence systems using Python Artificial Intelligence (AI) continues to grow in popularity and disrupt a wide range of domains, but it is a complex and daunting topic. In this book, you’ll get to grips with building deep learning apps, and how you can use PyTorch for...
  • №72
  • 5,25 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 338 p. — ISBN: 978-1-83855-704-1. Use PyTorch to build end-to-end artificial intelligence systems using Python Artificial Intelligence (AI) continues to grow in popularity and disrupt a wide range of domains, but it is a complex and daunting topic. In this book, you’ll get to grips with building deep learning apps, and how you can use PyTorch for...
  • №73
  • 5,19 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2020. — 190 p. — ISBN: 978-1-83855-704-1. Code files only! Use PyTorch to build end-to-end artificial intelligence systems using Python Artificial Intelligence (AI) continues to grow in popularity and disrupt a wide range of domains, but it is a complex and daunting topic. In this book, you’ll get to grips with building deep learning apps, and how you can use...
  • №74
  • 2,21 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Apress, 2023. — 266 p. — eBook ISBN 978-1-4842-8925-9. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code. You'll start by learning...
  • №75
  • 5,08 МБ
  • добавлен
  • описание отредактировано
Apress, 2019. — 184 р. — ISBN: 978-1484242575. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability distributions using...
  • №76
  • 15,38 МБ
  • добавлен
  • описание отредактировано
Apress, 2019. — 184 р. — ISBN: 978-1484242575. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability distributions using...
  • №77
  • 15,03 МБ
  • добавлен
  • описание отредактировано
Apress, 2019. — 184 p. — ISBN13: (electronic): 978-1-4842-4258-2. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability...
  • №78
  • 14,76 МБ
  • добавлен
  • описание отредактировано
Apress, 2019. — 184 p. — ISBN13: (electronic): 978-1-4842-4258-2. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability...
  • №79
  • 15,34 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Apress Media, LLC, 2022. — 290 p. — ISBN 978-1-4842-8925-9. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code. You’ll start by...
  • №80
  • 13,23 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Apress Media, LLC, 2022. — 290 p. — ISBN 978-1-4842-8925-9. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code. You’ll start by...
  • №81
  • 4,22 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Apress Media, LLC, 2022. — 290 p. — ISBN 978-1-4842-8925-9. Learn how to use PyTorch to build neural network models using code snippets updated for this second edition. This book includes new chapters covering topics such as distributed PyTorch modeling, deploying PyTorch models in production, and developments around PyTorch with updated code. You’ll start by...
  • №82
  • 13,12 МБ
  • добавлен
  • описание отредактировано
2nd edition. — Packt Publishing Ltd., 2019. — 304 p. — ISBN: 978-1-83855-300-5. Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x. Key Features Implement deep learning techniques to build neural network architectures using PyTorch 1.x; Understand GPU computing to perform heavy deep learning...
  • №83
  • 27,49 МБ
  • добавлен
  • описание отредактировано
2nd edition. — Packt Publishing Ltd., 2019. — 304 p. — ISBN: 978-1-83855-300-5. Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x. Key Features Implement deep learning techniques to build neural network architectures using PyTorch 1.x; Understand GPU computing to perform heavy deep learning...
  • №84
  • 29,87 МБ
  • добавлен
  • описание отредактировано
2nd edition. — Packt Publishing Ltd., 2019. — 304 p. — ISBN: 978-1-83855-300-5. Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x. Key Features Implement deep learning techniques to build neural network architectures using PyTorch 1.x; Understand GPU computing to perform heavy deep learning...
  • №85
  • 4,33 МБ
  • добавлен
  • описание отредактировано
2nd edition. — Packt Publishing Ltd., 2019. — 304 p. — ISBN: 978-1-83855-300-5. Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x. Key Features Implement deep learning techniques to build neural network architectures using PyTorch 1.x; Understand GPU computing to perform heavy deep learning...
  • №86
  • 50,21 МБ
  • добавлен
  • описание отредактировано
2nd edition. — Packt Publishing Ltd., 2019. — 304 p. — ISBN: 978-1-83855-300-5. Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x. Key Features Implement deep learning techniques to build neural network architectures using PyTorch 1.x; Understand GPU computing to perform heavy deep learning...
  • №87
  • 29,81 МБ
  • добавлен
  • описание отредактировано
2nd Edition — Packt Publishing Ltd., 2019. — 293 p. — ISBN: 978-1-83855-300-5. Code files only! Build and train neural network models with high speed and flexibility in text, vision, and advanced analytics using PyTorch 1.x. Deep learning powers the most intelligent systems in the world, such as Google Assistant, Siri, and Alexa. Simultaneously, PyTorch is grabbing the...
  • №88
  • 189,31 МБ
  • добавлен
  • описание отредактировано
P
O’Reilly Media, Inc., 2021. — 310 p. — ISBN 978-1-492-09000-7. This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers. Research...
  • №89
  • 6,75 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, Inc., 2021. — 310 p. — ISBN 978-1-492-09000-7. This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers. Research...
  • №90
  • 6,24 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, Inc., 2021. — 310 p. — ISBN 978-1-492-09000-7. 2021-05-11: First Release Code Files Only! This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the...
  • №91
  • 11,13 МБ
  • добавлен
  • описание отредактировано
O’Reilly, 2019. — 220 p. — ISBN: 1492045357. Deep learning is changing everything. This machine-learning method has already surpassed traditional computer vision techniques, and the same is happening with NLP. If you're looking to bring deep learning into your domain, this practical book will bring you up to speed on key concepts using Facebook's PyTorch framework. Once author...
  • №92
  • 9,66 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 220 p. — ISBN: 978-1-492-04535-9. Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian...
  • №93
  • 6,22 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 210 p. — ISBN: 978-1-492-04535-9. Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian...
  • №94
  • 3,87 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 210 p. — ISBN: 978-1-492-04535-9. Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian...
  • №95
  • 9,32 МБ
  • добавлен
  • описание отредактировано
R
O’Reilly Media, 2019. — 250 p. — ISBN13: 978-1-491-97823-8. From the Preface This book aims to bring newcomers to natural language processing (NLP) and deep learning to a tasting table covering important topics in both areas. Both of these subject areas are growing exponentially. As it introduces both deep learning and NLP with an emphasis on implementation, this book occupies...
  • №96
  • 4,81 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 250 p. — ISBN13: 978-1-491-97823-8. From the Preface This book aims to bring newcomers to natural language processing (NLP) and deep learning to a tasting table covering important topics in both areas. Both of these subject areas are growing exponentially. As it introduces both deep learning and NLP with an emphasis on implementation, this book occupies...
  • №97
  • 11,54 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 256 p. - ISBN: 1491978236 Natural Language Processing (NLP) offers unbounded opportunities for solving interesting problems in artificial intelligence, making it the latest frontier for developing intelligent, deep learning-based applications. If you’re a developer or researcher ready to dive deeper into this rapidly growing area of artificial...
  • №98
  • 11,92 МБ
  • добавлен
  • описание отредактировано
O’Reilly Media, 2019. — 256 p. — ISBN: 1491978236 From the Preface This book aims to bring newcomers to natural language processing (NLP) and deep learning to a tasting table covering important topics in both areas. Both of these subject areas are growing exponentially. As it introduces both deep learning and NLP with an emphasis on implementation, this book occupies an...
  • №99
  • 15,33 МБ
  • добавлен
  • описание отредактировано
GitforGits, 2023. — 321 p. — ISBN-13 978-8196288372. This book is a comprehensive guide to understanding and utilizing PyTorch 2.0 for Deep Learning applications. It starts with an introduction to PyTorch, its various advantages over other Deep Learning frameworks, and its blend with CUDA for GPU acceleration. We delve into the heart of PyTorch – tensors, learning their...
  • №100
  • 368,60 КБ
  • добавлен
  • описание отредактировано
GitforGits, 2023. — 321 p. — ISBN-13 978-8196288372. This book is a comprehensive guide to understanding and utilizing PyTorch 2.0 for Deep Learning applications. It starts with an introduction to PyTorch, its various advantages over other Deep Learning frameworks, and its blend with CUDA for GPU acceleration. We delve into the heart of PyTorch – tensors, learning their...
  • №101
  • 1,21 МБ
  • добавлен
  • описание отредактировано
GitforGits, 2023. — 321 p. — ISBN-13 978-8196288372. This book is a comprehensive guide to understanding and utilizing PyTorch 2.0 for Deep Learning applications. It starts with an introduction to PyTorch, its various advantages over other Deep Learning frameworks, and its blend with CUDA for GPU acceleration. We delve into the heart of PyTorch – tensors, learning their...
  • №102
  • 184,07 КБ
  • добавлен
  • описание отредактировано
GitforGits, 2023. — 321 p. — ISBN-13 978-8196288372. This book is a comprehensive guide to understanding and utilizing PyTorch 2.0 for Deep Learning applications. It starts with an introduction to PyTorch, its various advantages over other Deep Learning frameworks, and its blend with CUDA for GPU acceleration. We delve into the heart of PyTorch – tensors, learning their...
  • №103
  • 927,26 КБ
  • добавлен
  • описание отредактировано
2nd Edition. — GitforGits, 2024. — 314 p. — ISBN-13 978-8119177916. "Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent...
  • №104
  • 413,40 КБ
  • добавлен
  • описание отредактировано
2nd Edition. — GitforGits, 2024. — 314 p. — ISBN-13 978-8119177916. "Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent...
  • №105
  • 195,17 КБ
  • добавлен
  • описание отредактировано
2nd Edition. — GitforGits, 2024. — 314 p. — ISBN-13 978-8119177916. "Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent...
  • №106
  • 165,09 КБ
  • добавлен
  • описание отредактировано
2nd Edition. — GitforGits, 2024. — 314 p. — ISBN-13 978-8119177916. "Learning PyTorch 2.0, Second Edition" is a fast-learning, hands-on book that emphasizes practical PyTorch scripting and efficient model development using PyTorch 2.3 and CUDA 12. This edition is centered on practical applications and presents a concise methodology for attaining proficiency in the most recent...
  • №107
  • 4,33 МБ
  • добавлен
  • описание отредактировано
GitforGits, October 5, 2023. — 238 p. — ISBN-13: 978-8119177967. Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural...
  • №108
  • 279,46 КБ
  • добавлен
  • описание отредактировано
GitforGits, October 5, 2023. — 238 p. — ISBN-13: 978-8119177967. Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural...
  • №109
  • 407,13 КБ
  • добавлен
  • описание отредактировано
GitforGits, October 5, 2023. — 238 p. — ISBN-13: 978-8119177967. Starting a PyTorch Developer and Deep Learning Engineer career? Check out this 'PyTorch Cookbook,' a comprehensive guide with essential recipes and solutions for PyTorch and the ecosystem. The book covers PyTorch deep learning development from beginner to expert in well-written chapters. The book simplifies neural...
  • №110
  • 270,83 КБ
  • добавлен
  • описание отредактировано
Independently published, 2024. — 100 c. PyTorch для освоения навыков обработки естественного языка: создавайте мощные модели диалога с помощью Python Dialogue systems are revolutionizing human-computer interaction, enabling us to interact with machines in a natural and engaging way. But what about open-domain systems? These are the future, capable of extended conversations on...
  • №111
  • 12,67 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2021. — 340 p. — ISBN 978-1-80020-810-0. Harness the power of the easy-to-use, high-performance fastai framework to rapidly create complete deep learning solutions with few lines of code Key Features Discover how to apply state-of-the-art deep learning techniques to real-world problems Build and train neural networks using the power and flexibility of the...
  • №112
  • 18,99 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2021. — 340 p. — ISBN 978-1-80020-810-0. Harness the power of the easy-to-use, high-performance fastai framework to rapidly create complete deep learning solutions with few lines of code Key Features Discover how to apply state-of-the-art deep learning techniques to real-world problems Build and train neural networks using the power and flexibility of the...
  • №113
  • 36,43 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2021. — 340 p. — ISBN 978-1-80020-810-0. Harness the power of the easy-to-use, high-performance fastai framework to rapidly create complete deep learning solutions with few lines of code Key Features Discover how to apply state-of-the-art deep learning techniques to real-world problems Build and train neural networks using the power and flexibility of the...
  • №114
  • 17,25 МБ
  • добавлен
  • описание отредактировано
S
Packt, 2019. — 254 p. — ISBN: 978-1789804591. Implement techniques such as image classification and natural language processing (NLP) by understanding the different neural network architectures Key Features Understand deep learning and how it can solve complex real-world problems Apply deep learning for image classification and text processing using neural networks Develop deep...
  • №115
  • 9,89 МБ
  • добавлен
  • описание отредактировано
Packt, 2019. — 254 p. — ISBN: 978-1789804591. Implement techniques such as image classification and natural language processing (NLP) by understanding the different neural network architectures Key Features Understand deep learning and how it can solve complex real-world problems Apply deep learning for image classification and text processing using neural networks Develop deep...
  • №116
  • 3,50 МБ
  • добавлен
  • описание отредактировано
Packt, 2019. — 254 p. — ISBN: 978-1789804591. Code files Implement techniques such as image classification and natural language processing (NLP) by understanding the different neural network architectures Key Features Understand deep learning and how it can solve complex real-world problems Apply deep learning for image classification and text processing using neural networks...
  • №117
  • 37,31 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2019. — 230 p. — ISBN: 978-1-78980-459-1. Implement techniques such as image classification and natural language processing (NLP) by understanding the different neural network architectures Machine learning is rapidly becoming the most preferred way of solving data problems, thanks to the huge variety of mathematical algorithms that find patterns, which are...
  • №118
  • 18,16 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2019. — 230 p. — ISBN: 978-1-78980-459-1. Implement techniques such as image classification and natural language processing (NLP) by understanding the different neural network architectures Machine learning is rapidly becoming the most preferred way of solving data problems, thanks to the huge variety of mathematical algorithms that find patterns, which are...
  • №119
  • 9,98 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Packt Publishing Ltd., 2020. — 330 p. — ISBN: 978-1-83898-921-7. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at...
  • №120
  • 6,45 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Packt Publishing Ltd., 2020. — 330 p. — ISBN: 978-1-83898-921-7. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at...
  • №121
  • 14,90 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Packt Publishing Ltd., 2020. — 330 p. — ISBN: 978-1-83898-921-7. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at...
  • №122
  • 7,59 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Packt Publishing Ltd., 2020. — 330 p. — ISBN: 978-1-83898-921-7. Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at...
  • №123
  • 7,69 МБ
  • добавлен
  • описание отредактировано
2nd Edition. — Packt Publishing Ltd., 2020. — 330 p. — ISBN: 978-1-83898-921-7. Code files only! Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you’ll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will...
  • №124
  • 82,96 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2022 — 56 p. — ISBN: 9781800561618. Build, train, deploy, and scale deep learning models quickly and accurately, improving your productivity using the lightweight PyTorch Wrapper PyTorch Lightning lets researchers build their own Deep Learning (DL) models without having to worry about the boilerplate. With the help of this book, you'll be able to maximize...
  • №125
  • 2,35 МБ
  • добавлен
  • описание отредактировано
Manning, 2020. — 488 p. — ISBN: 9781617295263. Deep Learning with PyTorch teaches you how to implement deep learning algorithms with Python and PyTorch. This book takes you into a fascinating case study: building an algorithm capable of detecting malignant lung tumors using CT scans. As the authors guide you through this real example, you'll discover just how effective and fun...
  • №126
  • 46,60 МБ
  • добавлен
  • описание отредактировано
Manning Publications, 2020. — 520 p. — ISBN: 978-1617295263. Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with...
  • №127
  • 7,09 МБ
  • добавлен
  • описание отредактировано
Manning Publications, 2020. — 520 p. — ISBN: 978-1617295263. Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with...
  • №128
  • 24,66 МБ
  • добавлен
  • описание отредактировано
Manning Publications, 2020. — 520 p. — ISBN: 978-1617295263. Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with...
  • №129
  • 24,92 МБ
  • добавлен
  • описание отредактировано
Manning Publications, 2020. — 520 p. — ISBN: 978-1617295263. Code files only! Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and...
  • №130
  • 169,25 МБ
  • добавлен
  • описание отредактировано
Manning, 2019. — vi, 134 p. — ISBN 978-1-61729-712-0. This book is intended to be a starting point for software engineers, data scientists, and motivated students who are fluent in Python and want to become comfortable using PyTorch to build deep learning projects. To that end, we take a hands-on approach; we encourage you to keep your computer at the ready so that you can play...
  • №131
  • 16,73 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2018. — 262 p. — ISBN: 1788624335. Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of...
  • №132
  • 10,83 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2018. — 262 p. — ISBN: 1788624335. Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it easier to implement solutions to problems in the areas of...
  • №133
  • 17,20 МБ
  • добавлен
  • описание отредактировано
T
Packt, 2019. — 250 p. — ISBN: 978-1788834131. Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key Features Internals and principles of PyTorch Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more Build deep learning workflows and take deep learning models from prototyping to production Book...
  • №134
  • 4,30 МБ
  • добавлен
  • описание отредактировано
Packt, 2019. — 250 p. — ISBN: 978-1788834131. Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key Features Internals and principles of PyTorch Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more Build deep learning workflows and take deep learning models from prototyping to production Book...
  • №135
  • 9,65 МБ
  • добавлен
  • описание отредактировано
Packt, 2019. — 250 p. — ISBN: 978-1788834131. Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch Key Features Internals and principles of PyTorch Implement key deep learning methods in PyTorch: CNNs, GANs, RNNs, reinforcement learning, and more Build deep learning workflows and take deep learning models from prototyping to production Book...
  • №136
  • 13,19 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2019. — 250 p. — ISBN: 978-1-78883-413-1. Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The book will help you...
  • №137
  • 9,67 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2019. — 250 p. — ISBN: 978-1-78883-413-1. Code files only! Hands-on projects cover all the key deep learning methods built step-by-step in PyTorch PyTorch Deep Learning Hands-On is a book for engineers who want a fast-paced guide to doing deep learning work with Pytorch. It is not an academic textbook and does not try to teach deep learning principles. The...
  • №138
  • 138,55 КБ
  • добавлен
  • описание отредактировано
BPB Publications, 2024. — 310 р. — ISBN: 978-93-55517-494. Your key to transformer based NLP, vision, speech, and multimodalities Key Features Transformer architecture for different modalities and multimodalities. Practical guidelines to build and fine-tune transformer models. Comprehensive code samples with detailed documentation. Description This book covers transformer...
  • №139
  • 5,87 МБ
  • добавлен
  • описание отредактировано
BPB Publications, 2024. — 310 р. — ISBN: 978-93-55517-494. Your key to transformer based NLP, vision, speech, and multimodalities Key Features Transformer architecture for different modalities and multimodalities. Practical guidelines to build and fine-tune transformer models. Comprehensive code samples with detailed documentation. Description This book covers transformer...
  • №140
  • 5,99 МБ
  • добавлен
  • описание отредактировано
BPB Publications, 2024. — 310 р. — ISBN: 978-93-55517-494. Your key to transformer based NLP, vision, speech, and multimodalities Key Features Transformer architecture for different modalities and multimodalities. Practical guidelines to build and fine-tune transformer models. Comprehensive code samples with detailed documentation. Description This book covers transformer...
  • №141
  • 2,34 МБ
  • добавлен
  • описание отредактировано
BPB Publications, 2024. — 412 р. — ISBN 978-93-55517-494. Your key to transformer based NLP, vision, speech, and multimodalities Key Features Transformer architecture for different modalities and multimodalities. Practical guidelines to build and fine-tune transformer models. Comprehensive code samples with detailed documentation. Description This book covers transformer...
  • №142
  • 7,63 МБ
  • добавлен
  • описание отредактировано
V
Leanpub, 2020. — 179 p. — ASIN B0895YQYFC. Learn how to solve real-world problems with Deep Learning models (NLP, Computer Vision, and Time Series). Go from prototyping to deployment with PyTorch and Python! PyTorch is the best Deep Learning library there (currently) is, period! Doing ML with PyTorch feels like a superpower (of course, there are bad parts, too). Trust me, I...
  • №143
  • 12,68 МБ
  • добавлен
  • описание отредактировано
Independently published, 2020. — 179 p. — ASIN B0895YQYFC. Learn how to solve real-world problems with Deep Learning models (NLP, Computer Vision, and Time Series). Go from prototyping to deployment with PyTorch and Python! PyTorch is the best Deep Learning library there (currently) is, period! Doing ML with PyTorch feels like a superpower (of course, there are bad parts, too)....
  • №144
  • 12,70 МБ
  • добавлен
  • описание отредактировано
Independently published, 2020. — 179 p. — ASIN B0895YQYFC. Learn how to solve real-world problems with Deep Learning models (NLP, Computer Vision, and Time Series). Go from prototyping to deployment with PyTorch and Python! PyTorch is the best Deep Learning library there (currently) is, period! Doing ML with PyTorch feels like a superpower (of course, there are bad parts, too)....
  • №145
  • 25,48 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2018. — 262 p. Build neural network models in text, vision and advanced analytics using PyTorch Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it...
  • №146
  • 10,83 МБ
  • добавлен
  • описание отредактировано
Packt Publishing, 2018. — 262 p. Build neural network models in text, vision and advanced analytics using PyTorch Deep learning powers the most intelligent systems in the world, such as Google Voice, Siri, and Alexa. Advancements in powerful hardware, such as GPUs, software frameworks such as PyTorch, Keras, Tensorflow, and CNTK along with the availability of big data have made it...
  • №147
  • 19,26 МБ
  • добавлен
  • описание отредактировано
W
Independently published, 2023. — 48 р. — ASIN: B0CN4XBN73. Dive into the world of intelligent systems with 'Intro to Machine Learning with PyTorch.' This comprehensive ebook serves as your gateway to understanding the fundamentals of machine learning using PyTorch, a powerful open-source machine learning library. Whether you're a beginner or have some experience in the field,...
  • №148
  • 9,47 МБ
  • добавлен
  • описание отредактировано
Л
Пер. с англ. А.А. Слинкина. — Москва: ДМК Пресс, 2020. — 282 с.: ил. — ISBN 978-5-97060-853-1. Библиотека PyTorch выходит на передовые позиции в качестве средства обучения с подкреплением (ОП) благодаря эффективности и простоте ее использования. Эта книга организована как справочник по работе с PyTorch, охватывающий широкий круг тем – от самых азов (настройка рабочей среды) до...
  • №149
  • 4,24 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. А.А. Слинкина. — Москва: ДМК Пресс, 2020. — 282 с.: ил. — ISBN 978-5-97060-853-1. Библиотека PyTorch выходит на передовые позиции в качестве средства обучения с подкреплением (ОП) благодаря эффективности и простоте ее использования. Эта книга организована как справочник по работе с PyTorch, охватывающий широкий круг тем – от самых азов (настройка рабочей среды) до...
  • №150
  • 3,23 МБ
  • добавлен
  • описание отредактировано
М
М.: ДМК Пресс, 2023. – 226 с. В этом руководстве исследуется современное трехмерное глубокое обучение: приводятся пошаговые объяснения базовых понятий и концепций, а также практические примеры, на основе которых вы сможете создавать собственные модели. Вы научитесь обрабатывать 3D-данные с использованием облаков точек, полигональных сеток; работать с 3D-геометрией, моделями...
  • №151
  • 13,04 МБ
  • добавлен
  • описание отредактировано
СПб.: Питер, 2020, 2020. — 256 с. — (Бестселлеры O’Reilly). Обработка текстов на естественном языке (Natural Language Processing, NLP) - крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate. Эта книга поможет вам изучить PyTorch - библиотеку глубокого обучения для языка Python -...
  • №152
  • 6,26 МБ
  • добавлен
  • описание отредактировано
СПб.: Питер, 2020. — 256 с. — (Бестселлеры O’Reilly). — ISBN: 978-5-4461-1241-8. Обработка текстов на естественном языке (Natural Language Processing, NLP) - крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate. Эта книга поможет вам изучить PyTorch - библиотеку глубокого обучения...
  • №153
  • 4,11 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти. — СПб.: Питер, 2020. — 256 с.: ил. — (Бестселлеры O’Reilly). — ISBN: 978-5-4461-1241-8 (рус.), ISBN: 978-1491978238 (англ.). Обработка текстов на естественном языке (Natural Language Processing, NLP) — крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate....
  • №154
  • 2,77 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти. — СПб.: Питер, 2020. — 256 с.: ил. — (Бестселлеры O’Reilly). — ISBN: 978-5-4461-1241-8 (рус.), ISBN: 978-1491978238 (англ.). Обработка текстов на естественном языке (Natural Language Processing, NLP) — крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate....
  • №155
  • 2,51 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти. — СПб.: Питер, 2020. — 256 с.: ил. — (Бестселлеры O’Reilly). — ISBN: 978-5-4461-1241-8 (рус.), ISBN: 978-1491978238 (англ.). Обработка текстов на естественном языке (Natural Language Processing, NLP) — крайне важная задача в области искусственного интеллекта. Успешная реализация делает возможными такие продукты, как Alexa от Amazon и Google Translate....
  • №156
  • 4,27 МБ
  • добавлен
  • описание отредактировано
П
СПб.: Питер, 2020. — 256 с. PyTorch – это фреймворк от Facebook с открытым исходным кодом. Узнайте, как использовать его для создания собственных нейронных сетей. Ян Пойнтер поможет разобраться, как настроить PyTorch в облачной среде, как создавать нейронные архитектуры, облегчающие работу с изображениями, звуком и текстом. Книга охватывает важнейшие концепции применения...
  • №157
  • 4,88 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. А. Попова. — СПб.: Питер, 2020. — 256 с.: ил. — (Бестселлеры O’Reilly). — ISBN 978-5-4461-1677-5. PyTorch – это фреймворк от Facebook с открытым исходным кодом. Узнайте, как использовать его для создания собственных нейронных сетей. Ян Пойнтер поможет разобраться, как настроить PyTorch в облачной среде, как создавать нейронные архитектуры, облегчающие работу с...
  • №158
  • 2,53 МБ
  • добавлен
  • описание отредактировано
С
Питер, 2022. — 624 с. Обычно на глубокое обучение смотрят с ужасом, считая, что только доктор математических наук или ботан, работающий в крутой айтишной корпорации, могут разобраться в этой теме. Отбросьте стереотипы: любой программист, знакомый с Python, может добиться впечатляющих результатов. Как? С помощью fastai - библиотеки, предоставляющей комфортный интерфейс для...
  • №159
  • 10,94 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. Д. Брайт. — СПб.: Питер, 2022. — 624 с.: ил. — (Бестселлеры O’Reilly). — ISBN 978-5-4461-1475-7. Обычно на глубокое обучение смотрят с ужасом, считая, что только доктор математических наук или ботан, работающий в крутой айтишной корпорации, могут разобраться в этой теме. Отбросьте стереотипы: любой программист, знакомый с Python, может добиться впечатляющих...
  • №160
  • 7,73 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти, С. Черников. — СПб.: Питер, 2022. — 576 с.: ил. — (Библиотека программиста). — ISBN 978-5-4461-1945-5. Многие средства глубокого обучения используют Python, но именно библиотека PyTorch по-настоящему «питоническая». Легкая в освоении для тех, кто знаком с NumPy и scikit-learn, PyTorch упрощает работу с глубоким обучением, обладая в то же время богатым...
  • №161
  • 45,41 МБ
  • добавлен
  • описание отредактировано
Пер. с англ. И. Пальти, С. Черников. — СПб.: Питер, 2022. — 576 с.: ил. — (Библиотека программиста). — ISBN 978-5-4461-1945-5. Многие средства глубокого обучения используют Python, но именно библиотека PyTorch по-настоящему «питоническая». Легкая в освоении для тех, кто знаком с NumPy и scikit-learn, PyTorch упрощает работу с глубоким обучением, обладая в то же время богатым...
  • №162
  • 7,25 МБ
  • добавлен
  • описание отредактировано
В этом разделе нет файлов.

Комментарии

В этом разделе нет комментариев.