Зарегистрироваться
Восстановить пароль
FAQ по входу

Шагидуллин Р.Р. Рациональные принципы метаматематики

  • Файл формата pdf
  • размером 2,35 МБ
  • Добавлен пользователем
  • Описание отредактировано
Шагидуллин Р.Р. Рациональные принципы метаматематики
Казань: Казанский федеральный ун-т (КФУ), 2017. — 243 с.
Основной продукт математического творчества – теоремы и доказательства. ≪Со времен древних греков говорить "математика" — значит говорить "доказательство".≫ (Н. Бурбаки). Сам же процесс творчества организован принципами, которые мы называем рациональными. Первый уровень принципов, которые математик использует при поиске доказательств, изложены в руководствах по решению олимпиадных задач. Системный подход к изложению принципов также был предпринят: принципы объединялись либо в области правдоподобных рассуждений (Д. Пойа), или как область эвристики (Ж. Адамар, А. Пуанкаре, Э. Боне и др). Цель автора показать, что рациональные принципы математики по мере усложнения материала, ими организуемого, становятся близки к категориям и законам диалектической логики как по форме, так и по содержанию. Надо вообще выработать в себе способность размышлять в двойственности – вот лейтмотив книги. Надо уметь анализировать взаимодействия противополагаемых объектов, оставляя себе ≪на память≫ обобщенные выводы в виде принципов. Принципы сами способны развиваться до теорий, и мы приводим примеры такого развития. Далее, приводятся разделы классических дисциплин: теории формальных систем, теории метрических и общих топологических пространств. Это диктуется необходимостью. Во-первых, нам нужны примеры ≪высокого уровня≫, а не только из ≪школьной≫ математики. Во-вторых, только проследив развитие идей на ≪длинном интервале≫, можно сформулировать точно и полно некоторые принципы. Наконец, это делает изложение независимым от необходимости заглядывать в соответствующие учебники.
Автор надеется, что эта книга учит мыслить ≪не как компьютер≫. О содержании книги четкое представление дает оглавление.
Предисловие.
Понимание и доказательство. Основные объекты и идеология этой книги.
Принцип специализации и индукции.
Дедукция. От общего к частному.
Анализ и синтез. Принцип разложения и сборки.
Элементарное пространство и предельный переход.
Принцип ε-поправки. Большое-малое в математике.
Принцип компактности.
Комбинаторные принципы.
Принципы и логика формализации.
Аналогия как метаматематический принцип.
Вариативный и эволюционный ряды.
Эволюция понятия ≪пространство≫ в математике.
Принцип организации и привлечения идеального бытия.
Эволюция понятия величины в математике.
Доказательства с помощью компьютера.
Мышление в двойственности.
Литература.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация