Зарегистрироваться
Восстановить пароль
FAQ по входу

Hilbe J., De Souza R., Ishida E. Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan

  • Файл формата pdf
  • размером 7,65 МБ
  • Добавлен пользователем
  • Описание отредактировано
Hilbe J., De Souza R., Ishida E. Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan
Cambridge University Press, 2017. — 384 p. — ISBN: 978-1107133082.
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives, then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretation to address scientific questions. A must-have for astronomers, the book's concrete approach will also be attractive to researchers in the sciences more broadly.
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация